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ABSTRACT

Future airborne radars will be required to detect targets in an interference
background comprised of clutter and jamming. Space-time adaptive processing
(STAP) refers to multidimensional adaptive filtering algorithms that simultaneously
combine the signals from the elements of an array antenna and the multiple pulses
of a coherent radar waveform, to suppress interference and provide target detec-
tion. STAP can improve detection of low-velocity targets obscured by mainlobe
clutter, detection of targets masked by sidelobe clutter, and detection in combined
clutter and jamming environments. This report analyzes a variety of approaches
to STAP problem. Optimum, or fully adaptive processing is reviewed. Computa-
tional complexity and the need to estimate the interference from a limited amount
of available data make fully adaptive STAP impractical. As a result, partially adap-
tive space-time processors are required. A taxonomy of reduced-dimension STAP
algorithms is presented where algorithms are classified based on the type of pre-
processor employed. For example, beamspace algorithms use spatial preprocessing,
while post-doppler approaches perform temporal (Doppler) filtering before adaptive
processing. In some cases, the special structure of the clutter can be exploited to
design preprocessors yielding minimum clutter rank. For each class, either sample-
matrix-inversion (SMI) or subspace-based weight computation may be employed.
Simulation results are presented to illustrate various performance metrics, includ-
ing SINR, adapted patterns, minimum detectable velocity, and required degrees of
freedom.
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1. INTRODUCTION

Future airborne radars will be required to provide long-range detection of increasingly smaller
targets. This function must be performed in overland or littoral environments where the ground
clutter can be quite severe, and in the presence of hostile electronic countermeasures, or jamming.
Future radars must therefore possess, in addition to sufficient power and aperture, the capability
to suppress both clutter and jamming to near or below the noise level. Only then will the radar’s
sensitivity be fully utilized in signal environments containing unwanted interference.

The problems of clutter and jamming suppression have dominated the minds of radar engi-
neers since the beginnings of radar. The ground clutter seen by an airborne radar is extended in
both range and angle; it also is spread over a region in Doppler due to the platform motion. A
potential target may be obscured by not only mainlobe clutter that originates from the same angle
as the target but also by sidelobe clutter that comes from different angles but has the same Doppler
frequency. The effect of sidelobe clutter may be eliminated with low- enough antenna sidelobes on
transmit and receive. Achieving very low-sidelobes in practice can be quite difficult, especially in
the complex electromagnetic environment on an aircraft, and very expensive. In many cases the
need to detect slow-moving targets prevents the radar from utilizing high-pulse repetition frequency
(PRF) waveforms to avoid clutter completely. Displaced-phase-center-antenna (DPCA) processing
[2, 1] was developed to solve the clutter problem in airborne surveillance radar. With DPCA the
receive aperture is shifted from pulse to pulse to compensate for the platform motion. Outputs from
different apertures with the same effective phase center are subtracted on a pulse-to-pulse basis to
cancel the clutter. DPCA requires velocity-based control of the radar PRF. DPCA’s sensitivity to
element mismatch errors limits the clutter cancellation achievable in practice, and DPCA alone has
no inherent provisions for suppressing jamming signals.

Adaptive array processing [22, 23] techniques developed over the last 25-30 years have been
successfully used to mitigate the effects of jamming on communication and radar systems. These
techniques, by virtue of their adaptive nature, can provide nulling far below the sidelobe level
limitation due to random errors. In an adaptive beamforming radar, however, special measures
must be taken to avoid the inclusion of mainlobe clutter during the adaptation process. For
example, the use of a special listening interval to sample the jamming [33] avoids this problem,
but this solution takes away from the radar timeline and creates a vulnerability to a nonstationary
jamming environment. Similarly, adaptive beamforming changes the receive antenna patterns and
therefore affects the clutter, which must subsequently be suppressed.

Space-time adaptive processing (STAP) refers to the extension of adaptive antenna techniques
to processors that simultaneously combine the signals received on multiple elements of an antenna
array (the spatial domain) and from multiple pulse repetition periods (the temporal domain) of a
coherent processing interval (CPI). STAP is therefore a generalization of DPCA processing that
utilizes many elements and pulses as well as data-adaptive combination of the various signals.
STAP offers the potential to improve airborne radar performance in several areas. First, it can



improve low-velocity target detection through better mainlobe clutter suppression. Second, STAP
can permit detection of small targets that might otherwise be obscured by sidelobe clutter. Third,
STAP provides detection in combined clutter and jamming environments. Finally, STAP adds
robustness to system errors and a capability to handle nonstationary interference.

A basic illustration of space-time adaptive processing is given in Figure 1. A pictorial view
of the interference environment seen by an airborne radar is shown in Figure 1(a). The signal-
to-noise-ratio (SNR) resulting from clutter and a single jamming signal is shown as a function of
angle and Doppler. Barrage noise jamming is localized in angle and distributed over all Doppler
frequencies. The clutter echo from a single ground patch has a Doppler frequency that depends
on its aspect with respect to the platform; clutter from all angles lies on the “clutter ridge” shown
in Figure 1(a). Note that a mainlobe target competes with both mainlobe and sidelobe clutter as
well as jamming. A space-time adaptive processor may be thought of as a two-dimensional filter
that represents combined receive beamforming and target Doppler filtering. An example adapted
response is shown in Figure 1(b). Note the high gain at the target angle and Doppler, and the
deep nulls along both the jamming and clutter lines. Applying this filter to the data will suppress
the interference and enable target detection. A bank of adaptive filters is then formed to cover all
potential target angles and velocities.

The first published work on space-time adaptive processing for radar was Brennan and Reed
[3] from 1973, in which optimum space-time filtering was described. Other work has been done
by Klemm [5, 6, 7, 8], who first tried to understand the fundamental degrees of freedom occupied
by airborne clutter. The significant advances over the last two decades in digital signal processing
technology have made the real-time implementation of STAP feasible with current or near-term
technology. As a result, STAP is becoming a more active research area. Barile et al. [9] have
considered some practical limitations to STAP performence. Richardson [43] has studied the rela-
tionship between STAP and DPCA processing. DiPietro [12] has examined a STAP algorithm that
utilizes several adjacent Doppler bins of data for adaptation. Cai and Wang [10] and Wicks [39]
have described a novel approach where a subset of space-time filter outputs is adaptively weighted.
Their architecture is coupled with a Generalized-Likelihood-Ratio Test (GLRT) that provides an
embedded constant-false-alarm-rate (CFAR) property. Much of the recent work has been focused
on a particular issue or algorithm. Many additional papers on adaptive detection and sensor array
signal processing also have direct application to STAP.
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The primary aim of this report is to analyze a variety of approaches to the space-time pro-
cessing, starting from a common set of assumptions and system parameters. To this end, some
algorithms are examined that have been described in the references above; variations to these
approaches as well as some new approaches are also considered. Fully adaptive STAP, where a sep-
arate adaptive weight is applied to all elements and pulses, is addressed first. Fully adaptive STAP
requires the solution to a system of linear equations of size MN, where N is the number of array
elements and M is the number of pulses per CPI. For typical radar systems, the product MN may
vary from several hundreds to tens of thousands. Fully adaptive STAP is impractical for two major
reasons. First is the sheer computational power needed to solve large systems of equations in the
time necessary for real-time radar operation. Second, the interference is typically unknown a priori
and must be estimated from the limited data available from a radar dwell. As the dimension of the
adaptive weight vector becomes larger, so does the amount of data required for a good estimate
of the environment. The inherent nonstationarity of radar clutter further limits the amount of
data over which the clutter can be assumed stationary, which in turn makes its estimation even
more difficult. These concerns lead naturally to investigation of reduced-dimension, or partially
adaptive, STAP architectures. A taxonomy of reduced-dimension STAP algorithms is presented
in which algorithms are classified according to the domain in which the weight application occurs.
The clutter seen by an airborne platform has a special structure induced by the platform motion;
this structure is exploited in the design of some partially adaptive algorithms.

The topic of this report is the use of adaptive processing for improved airborne radar system
performance. Although it is not discussed herein, an adaptive capability may in fact impact basic
aspects of radar system design. In the past, the need for ultralow sidelobes or high-PRF waveforms
was driven largely by the need to avoid clutter. A capability to suppress clutter adaptively may
allow the rethinking of conventional wisdom in some areas. For example, medium- or low-PRF
waveforms (with better range information) may be permissible in systems that had been primarily
high PRF. The lessening of requirements on overall sidelobe level may have beneficial effects on the
resulting component tolerances required and therefore even the cost of future radar systems.

The organization of this report is as follows. Chapter 2 defines the model for the signals
received by an airborne radar utilizing an array antenna. Chapter 3 considers some fundamentals,
including fully adaptive processing and a number of performance measures. Chapter 4 presents a
theory for reduced-dimension adaptive processing and a framework for classifying STAP algorithms.
Element-space approaches are discussed in detail in Chapter 5, and beamspace approaches are
presented in Chapter 6. Chapter 7 provides additional performance comparisons. Finally, Chapter 8
gives a summary and some areas for future work. For reference, a brief review of DPCA processing
is provided in Appendix 3.



2. AIRBORNE ARRAY RADAR SIGNAL ENVIRONMENT

2.1 Introduction

In this chapter, a model is developed for the signals received by an airborne pulsed-Doppler
radar. The radar utilizes an array antenna with an independent receiver channel behind each
element. The received signals will always contain a component due to receiver noise and may
contain components due to both desired targets and undesired interference. Here, interference
means either jamming, clutter, or both. The parameters for a generic radar system are used to
derive expressions for each of these potential signal components. Since the clutter received by the
airborne radar is the most complicated signal component, its development is the largest portion of
the chapter. The results developed here form the basis for the analysis of the various space-time
processing approaches that are discussed in the subsequent chapters of this report.

Space-time processing is a multidimensional filtering problem. To avoid a proliferation of
subscripts, matrix notation is used where possible. Although the concepts discussed in this chapter
are not new, the formulation of multidimensional radar data and covariance matrices in terms of
Kronecker and Hadamard matrix products may be new to some readers.

2.2 Radar System Description

The system under consideration is a pulsed Doppler radar residing on an airborne platform.
The radar antenna is a uniformly spaced linear array antenna (ULA) consisting of N elements.
These elements may be the beamformed columns of a rectangular planar array. The platform is
at an altitude h, and moving with constant velocity vector v,. The chosen coordinate system is
shown in Figure 2. The angle variables ¢ and 6 refer to true azimuth and elevation, and not the
standard spherical coordinate system angles. A unit vector k pointing in the (¢, 8) direction is
given by

k(4,8) = cos@sin X + cosfcos ¢ § + sinfz (1)

where X, ¥, and Z are the unit vectors of a Cartesian coordinate system. Let the array orientation
be specified by the interelement position vector d, so that the nth element, n = 0,..., N — 1, has
position (at some reference time)

rn=mnd . (2)

In this report, only horizontally oriented antennas are considered, and without loss of generality,
d = dx is chosen, where d is the interelement distance. With this definition the chosen angle
coordinates are referenced to the array normal. It is also assumed that the array elements are
identical, with radiation (voltage) pattern denoted by f(¢, ) and power pattern g(¢, ) = | f(#,6)|%.
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A fixed transmit pattern Gy(¢,6) for the array is assumed, which may or may not be tapered
to produce low sidelobes. The radar transmits a coherent burst of M pulses at a constant PRF
fr = 1/T,, where T, is the pulse repetition interval (PRI). The transmitter carrier frequency is
fo = ¢/A,, where ¢ is the propagation velocity. The time interval over which the waveform returns
are collected is commonly referred to as the coherent-processing interval (CPI). The CPI length is
equal to MT,. A pulse waveform of duration T}, and bandwidth B is assumed. On receive, each
element of the array has its own down-converter, matched filter receiver, and A/D converter, as
shown in Figure 3.

Since the receiver is a matched filter, the receiver bandwidth B is taken to be equal to that
of the transmitted pulse. Matched filtering is done separately on the returns from each pulse, after
which the signals are sampled by the A/D converter and sent to a digital processor. The digital
processor performs all subsequent radar signal and data processing. For each PRI, L time (range)
samples are collected to cover the range interval. With M pulses and N receiver channels, the
received data for one CPI comprises LMN complex baseband samples. This multidimensional data
set is often visualized as the L x M x N cube of complex samples shown in Figure 4. This assembly
will be referred to as the radar or CPI datacube.

To facilitate this discussion, some notation must be developed for referring to portions of
the radar data cube. First the mathematical conventions must be defined. Scalar quantities are
denoted with italic typeface. Lowercase boldface quantities denote vectors and uppercase boldface
quantities denote matrices. The operations of transposition, complex conjugation, and conjugate
transposition are denoted by superscripts T, *, and H, respectively. MATLAB notation for sepa-
rating the elements of a vector or matrix is employed, e.g., given scalars z and y, the vector [z; y]
is a 2 x 1 column vector, while the vector [z,y] is a 1 x 2 row vector. Similarly, for two N x 1
vectors a; and a;, A = [a;,a;] is an N x 2 matrix while a = [a;;az) is a 2N x 1 vector. The
symbols ® and ® refer to the Hadamard and Kronecker! matrix products [13], respectively. The
notation T = diag(t) denotes a diagonal matrix whose main diagonal is the vector t. The notation
x = vec(X) will define a vector x formed by stacking the columns of the matrix X. Also, the
notation R = Toeplitz(c,r) denotes a Toeplitz matrix whose first column is the vector ¢ and whose
first row is the vector r. Finally, the E{} symbol denotes the expected value of a random quantity.

Let z,,,; be the complex sample from the nth element, mth pulse, at the /th sample time
(range gate). Let x,,; be the N x 1 vector of antenna element outputs, or a spatial snapshot, at
the time of the /th range gate and mth pulse. Now let the N x M matrix X, consist of the spatial
snapshots for all pulses at the range of interest,

X = [ Bod g Hils oesg Sl ] . (3)

1Also called the tensor product.
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TABLE 1

Symbols for Radar System Parameters

N number of elements in array

M number of pulses per CPI

L number of range samples per PRI
w, = 27 f, | radar operating frequency

Ao radar operating wavelength

d interelement spacing

Tr pulse repetition interval (PRI)

fr pulse repetition frequency (PRF)

P, peak transmit power

T, transmit pulse width (uncompressed)
B instantaneous bandwidth

Gi(6,9) full array transmit power gain
f(6,¢) element pattern (voltage)

9(6,¢) element pattern (power)

L, system losses on transmit

L. ‘system losses on receive

N, receiver noise power spectral density
h, platform height

Vg platform velocity

For reference, Table 1 provides a list of the various radar system parameters. This matrix is
represented by the shaded slice of the datacube in Figure 4. The rows of X; represent the temporal
(pulse-by-pulse) samples for each antenna element. Beamforming is an operation that combines
the rows of X;, while combining the columns is a temporal, or Doppler filtering operation. It is
convenient to write the data for a single range gate as a the Ith MN x 1 vector x;, termed a
space-time snapshot, by stacking the columns of X;:

x; = vec(X;) = [ Xod; X1l -5 XM-1 ] ' i

11



This report will work primarily with data from a single range gate, where it is understood that the
components of the space-time snapshot may have a range dependency. For notational expediency,
the | subscript will be omitted in much of what follows. The symbol x will refer to a space-time
snapshot at the range of interest, and x,, will be the spatial snapshot for the mth PRI at this
range. The function of a surveillance radar is to ascertain whether targets are present in the data.
Thus, given a space-time snapshot, the signal processor must make a decision as to which of the
two hypotheses is true:

X=X Hy: Target absent

(5)

X = 0Vi 4 Xy H;: Target present

The vector v, is the (known) response of the system to a unit amplitude target and o, is the
(unknown) target amplitude. The component x, encompasses any interference or noise component
of the data. Three undesired components will be considered: clutter, jamming, and thermal noise.
These three components are assumes to be mutually uncorrelated. The target component is viewed
as a shift in the mean of the data, so that under either hypothesis the data has covariance matrix

R, = E{XuXuH} =R.+R; + Ry, (6)

where the subscript identifies the particular component. In the next sections, a model is developed
for the target response and for each interference and noise component, starting from the set of
radar system parameters.

2.3 Target

A target is defined as a moving point scatterer that is to be detected. The component of the
space-time snapshot at the range gate corresponding to the target range R; will be derived. The
target is also described by its azimuth ¢, elevation 6;, relative velocity with respect to the radar v,
and radar cross-section (RCS) o;. The derivation will begin by defining the transmitted waveform
and stepping through the filtering that leads to the samples forming the space-time snapshot. The
full array transmits a coherent burst of pulses

3(t) = aqu(t)e?wett¥) | (7)
where
M-1
u(t) = ) up(t — mT;) (8)
m=0
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is the signal’s complex envelope and u,(t) is the complex envelope of a single pulse. The transmit
signal amplitude is a;, and a random phase %, uniformly distributed on [0,27), is also included.
The pulse waveform u,(t) is of duration T, and has unit energy,

Tp
|7 sttt =1 . ®)
0
The energy in the transmitted signal is then
MT,
B / |5(t)[2dt = ME, (10)
0
where E, = a? is the energy transmitted in a single pulse.

The target echo is received by each of the N elements. Ignoring relativistic effects, the target
signal at the nth antenna element, 3,(t), is given by [14]

8 (t)== a,u(t ~ rn)ej21r(fo+ft)(‘—"n)ej¢ , (11)
where a, is the echo amplitude and
fi= 32 -

is the target Doppler frequency. It will be convenient at times to use the normalized Doppler
frequency defined by

o= fT=2t. (13)
fr
The target delay to the nth element, 7,, consists of two components:
T = T T (14)
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where 7, = 2R,/c is the round trip delay and

"_7/l = _k(¢t,2t) *Tp - _nk(d’t;ot) -d - _ng- cos 8, sin ¢, (15)

is the relative delay measured from the phase reference to the nth element. It will also be convenient
to define the target spatial frequency

_ k(¢,6,)-d

7, W

= /\icosot sin ¢, (16)

so that the phase delay to the nth element may be expressed as
—w,oTh = n2xd, . (17)

It is assumed that the transmitted waveform is narrowband; the relative delay term is in-
significant within the complex envelope term of Equation (11). With this assumption,

§a(t) = a,e?VeimEry(s — 1)eI2 Nt eI2M ot | (18)

where several of the fixed phase terms have been absorbed into the random phase 9. This signal
is now down-converted to baseband, matched filtered, and sampled with an A/D converter.

After down-conversion the nth element signal is
8n(t) = 3p(t)e™ 2ot = g IV eIm2mMey(t _ 1,)ed?m et (19)
Each pulse of the baseband signal is matched filtered separately with receiver filter
h(t) = up(—t) . (20)

The matched filter output for the nth channel is the signal

M-1
xn(t) = are]¢ejn21r|9x Z eJmZ‘IrﬂhX(t == mTrywt) , (21)

m=0
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where x(7, f) is the waveform ambiguity function [15]

X )= [ wlByup(8 - 1)eriPap. (22
Because of the pulse waveform normalization,

x(0,0)=1. (23)

Consider only the target range gate and let ¢, = 7o + mT,, m =0,...,M — 1 be the sample times
from each PRI at this range gate. The target samples are thus given by?

Tnm = Tn(tm) = a,e?¥x(0, f;)ed? Pt edmer®e (24)

Furthermore, assume that the pulse waveform time-bandwidth product and the expected range of
target Doppler frequencies are such that the waveform is insensitive to target Doppler shift, i.e.,
that

x(0,f)=1. (25)

It is also convenient to group the received amplitude and the random phase term of Equation (24)
into a single complex random amplitude a; = a,e’¥. This leaves the simple expression

n=0,....N-1
) . (26)
m=0,....M -1

Tom = Q4 ejn21n9gejm21rmg
=

The target amplitude is obtained directly from the radar equation. Let & be the single-pulse
signal-to-noise ratio (SNR) for a single antenna element on receive. This is given by

_ PT,Gu(6, $)g(6, $) 2o,
&= " N.LE (27)

where the radar system parameters were given in Table 1. The target power is then given by

E{Iat|2} =d (28)

2Neglect range straddling losses and also assume that there are no target range ambiguities.
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where o2 is the thermal noise power per element. The target amplitude is then a, = \/£;02. This
target model is easily generalized to random amplitudes as well. For example, if it is assumed
that the samples are zero mean complex Gaussian random variables, the target SNR would be
exponentially distributed with mean & and the target amplitude would be correspondingly Rayleigh
distributed.

Examination of Equation (26) shows that one exponential term depends on the spatial index
n and the other depends on the temporal index m. The spatial snapshot for the mth pulse,
Xm = [Zom} Tim} ---; TN-1,m), can be written as

Xm = [Zom] ZTim) «+v} IN-1,m]=aed™¥a(y,), (29)
where the N x 1 spatial steering vector a(?d) is defined to be

a(¢’ 0) = [ 1; e_ﬂfcoshina& . . ej(N—l)%cosGsind) ] (30)

3 cee gy

or
a(d) = [ 1; &, . ; eilN-1)2nd ] . (31)

The spatial steering vector assumes a Vandermonde form because of the uniform linear array
geometry and the assumption of identical element patterns. If the element patterns are not identical,
they must be included in the steering vector definition.

The target data is assembled in the form of a space-time snapshot

X: = at[a(ﬂt); e ®a(d,); ... ej(M‘l)z"w‘a(ﬂt)]
= o b(w) ®@a(¥), (32)
where
b(@)=[1; e?r@; ... eiM-V2mw |, (33)

is an M x 1 temporal steering vector. It is Vandermonde also, because the waveform is a uniform
PRF and the target velocity is constant.
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The MN x 1 space-time steering vector,
v(d,w) = b(w) ® a(d) . (34)

is defined to be the response of a target at spatial frequency ¥ and normalized Doppler w. If a
target is in the data, it contributes a term

Xy = Qg Ve, (35)

where v, = v(9;, @;) may also be called the target steering vector.

2.4 Noise

The first undesired signal that a potential target must contend with is noise. Assume that
the only noise source is internally generated receiver noise, which is always present on each channel.
Because each element has its own receiver, assume that the noise processes on each element are
mutually uncorrelated. Furthermore, assume that the instantaneous bandwidth is large compared
with the PRF.3 Therefore, noise samples on a single element taken at time instants separated by a
nonzero multiple of the PRI are temporally uncorrelated. Let z,,,, be the noise sample on the nth
element for the mth PRI. The first assumption above is a statement of spatial noise correlation

E{xnlnmx:lz,m} = 026711—"2 ’ (36)
where
1 ,m=0
6m == (37)
0 ,m#0

is the Kronecker delta and o2 is the noise power per element. The second assumption above leads
to the temporal noise correlation

Bt 2 P i & 38
Wi n,mo

3This is not inconsistent with the narrowband assumption made previously, merely a statement
that for the radar systems under consideration, f, << B << f,.
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Equations (36) and (38) lead to the noise component of the space-time covariance matrix being the
scaled identity matrix

R,=E {an,[;[} =’ Iy ®In=0%Iyn . (39)

In terms of the radar system parameters, the noise power 02 = N,B. For purposes of this analysis,
a convenient normalization is to set 2 = 1 so that all signal levels can be referenced by their SNR
per element and pulse.

The noise model above is realistic only when the dominant source of noise is internally gener-
ated receiver amplifier noise. If sky noise is a major contributor, a spatial correlation may need to
be introduced into the model above. It will be shown later that preprocessing prior to adaptation
will also introduce noise correlation between the various signals to be adaptively combined.

2.5 Jamming

In this section expressions are derived for the jamming contribution to a space-time snapshot
vector and its covariance matrix. Only barrage noise jamming that originates from land-based
or airborne platforms at long range from the radar will be considered. The jamming energy is
assumed to fill the radar’s instantaneous bandwidth. The narrowband assumption that a signal’s
propagation time across the array is small relative to 1/ B, i.e. there is no signal decorrelation across
the array, is again invoked. Conversely, a radar PRF is assumed that is significantly less than the
instantaneous bandwidth so that the jamming decorrelates from one pulse to the next. In other
words, the jamming is spatially correlated from element to element and temporally uncorrelated
from pulse to pulse. Thus, jamming looks like thermal noise temporally, but like a point target or
a discrete clutter source in the spatial domain.

Consider first a single jammer located at elevation #;, azimuth ¢;, and range R;. Let S;
denote the jammer’s effective radiated power density (in W/Hz) in the direction of the radar. The
jammer power spectral density received by one array element, J,, is then obtained from the range
equation [17] as

$i9(8;,8:)25

o= (47)2R2L,

(40)
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The received jammer-to-noise ratio (JNR) at an element is then given by

= (41)

S|s

where N, is the receiver noise power spectral density. The jamming component of the spatial
snapshot for the mth PRI is then

X = i 8 (42)

where a,, is the jammer amplitude for the mth PRI and a; = a(¢;,6;) is the jammer steering
vector. The jammer space-time snapshot may be written as

X; =a;®a;, (43)
where aj; = [ag ; a1 ; ... ; apm—1 | is a random vector containing the jammer amplitudes. The

jammer samples from different pulses are uncorrelated. Further assume for simplicity that the
jamming signal (aspect and power spectral density) is stationary over a CPI. Thus,

E{amon,} = azfj Omy—my, O E{ajaf} = 0261- In . (44)

The jammer space-time covariance matrix is then
Ry = E {xjxf} = azfj I ® ajaf =Iy® azfj ajaJH
= Iy®e®;, (45)
where @; is the jammer spatial covariance matrix

&, = E{xmx1} = o%; ajaf . (46)

The extension to multiple jamming signals is straightforward. Let J be the number of jamming
sources, and let 8, ¢x and £ be the elevation, azimuth, and JNR of the kth jammer, respectively,
for k = 1,...,J. The result is again given by Equation (45), but the spatial covariance matrix is
now given by

P, = AJ'EJ'AJH R (47)
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where

A;j=a(b,61), a(62,2), ..., a(65,6)) ] (48)

is an N x J matrix of the jammer spatial steering vectors and =; is the J x J jammer source
covariance matrix. The jammer space-time covariance matrix from Equation (45) is block diagonal.
Off-diagonal N X N blocks are zero because jamming samples from different PRIs are uncorrelated.
The stationary assumption results in the blocks along the diagonal all being equal to a single spatial
covariance matrix. Let the rank of the jammer spatial covariance matrix be

p; = rank(®;) . (49)

Assume that the J jammer steering vectors are linearly independent. If no two jamming signals
are perfectly coherent, then p; = J, and the jammer space-time covariance matrix has rank

r; = rank(R;) = M rank(®;) = MJ . (50)

The low rank nature of the jamming covariance matrix will be helpful in the design of efficient
adaptive processing architectures.

2.6 Clutter

Radar clutter is generically defined as the echoes from any scatterers deemed to be not of
tactical significance. For an airborne surveillance radar, the Earth’s surface is the major source of
clutter and is the only type of clutter to be considered in this report. Of the various sources of
interference, clutter is the most complicated because it is distributed in both angle and range and
is spread in Doppler frequency due to the platform motion. In this section, a model is developed
for the ground clutter component of the space-time snapshot for a given range, and the properties
of the clutter space-time covariance matrix are considered. The clutter in many cases is shown to
be low rank. The effects of velocity misalignment (due to aircraft crab, for example) and intrinsic
clutter motion are also modeled.

2.6.1 General Clutter Model

The return from a discrete ground clutter source has the same form as a target echo defined
in Section 2.2. Since the ground is assumed to have zero inherent velocity, the relative velocity of
a ground clutter source depends only on its aspect with respect to the radar and on the platform
velocity. Unlike a target, ground clutter is distributed in range; it exists over a region extending
from the platform altitude to the radar horizon. Ground clutter also exists over all azimuths and
a region in elevation angle bounded by the horizon elevation.
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Consider the clutter present at range E. from the radar, as shown in Figure 5. Assume a
spherical earth with a 4/3 effective radius [16]. The elevation angle 6. to this clutter ring is

; R? + ho(he + 2a.) . R.  h

0C=0 RC=— -1 ¢ al/la e o _1(_c a) 1

e(Re) - ( 2R (a. + hq) . 2a. i 2a.) "’ (5L}

where a. = 4/3r,. is the effective earth radius. The elevation angle is measured with respect to the

horizontal at the antenna. The grazing angle . is formed by the ray from antenna to clutter patch
and the surface tangent at the clutter patch,

: R? = ho(ha + 2a.) ) R. h
ot — -1 c a\'*a € ~ - -1 c _ a
Ye = Y(R.) = —sin ( 2R, . sin (2% 20e> 2 (52)

The radar horizon range

Ry = \/2a.h, + hZ = \/2a.h, (53)

is the range for which the grazing angle is zero.

RADAR [—}

»
| w-R

EARTH

Figure 5. A ring of ground clutter for a fired range.

4For a flat-earth model, the elevation and grazing angles are the same and equal to —sin™?(h,/R.).
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Let R, = ¢/2f, be the radar’s unambiguous range. Consider the clutter return for the /th
range gate, which corresponds to true range R, where 0 < R. < R,. If the unambiguous range
is greater than the horizon range, R, > Rp, the clutter is said to be unambiguous in range. In
this case the clutter component of the space-time snapshot consists of clutter from at most one
range. If the radar horizon is larger than the unambiguous range, some or all range gates will
have clutter contributions from multiple ranges. The clutter in this case is said to be range-
ambiguous. Let R; = R, + (¢ — 1)R, be the ¢th ambiguous range corresponding to the range gate
of interest. Each ambiguous range has corresponding elevation and grazing angles 8; = 6.(R;) and
¥i = Y.(R;) found from Equation (51) and Equation (52). The clutter component consists of the
superposition of returns from all ambiguous ranges within the radar horizon. Denote the number
of range ambiguities by N;.

As an approximation to a continuous field of clutter, the clutter return from each ambiguous
range will be modeled as the superposition of a large number N, of independent clutter sources
that are evenly distributed in azimuth about the radar. The location of the ikth clutter patch is
described by its azimuth ¢; and ambiguous range R; (or elevation 6;). The corresponding spatial
frequency is

g o K02 00) - _

3 cos §; sin ¢y, . (54)

>

The normalized Doppler frequency of the ikth patch will be denoted by ;. The clutter component
of the space-time snapshot is then given by

Ny N.

N = Z E air v(9ik, @ik) , (55)
1=1 k=1
where a;i is the random amplitude from the ikth clutter patch and v = v(Pik, @ik).

The power of each clutter contribution is obtained from the radar equation for area clutter
(17]. Each patch represents an effective area bounded in azimuth by the granularity of the angle
sampling, A¢ = 27 /N,, and in range by the radar’s range resolution AR = ¢/2B. The effective
RCS of the ikth clutter patch is therefore

Ol = aa(¢k70i) X Patch Area = Ua(¢k,0i)RiA¢AR sec ¢i ) (56)
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where o,(¢k,0;) is the area reflectivity of the ground at the location of the ikth patch. The
dependence on position is necessary to account for clutter nonhomogeneities in range and angle.
Various models for the clutter reflectivity have been proposed, depending on the terrain type, radar
frequency, polarization, etc. For the simulations in this report, the constant gamma model [17],

0o = 7Sin ¢c ’ (57)

is used, where 7 is the terrain-dependent parameter. With the definitions above, the contribution
from the ikth clutter patch has a clutter-to-noise ratio (CNR) given by

£ip = P.T,G Pk, 0:)9(Px, 0i) Mok
= (47)3N,L,R? '

(58)

The clutter amplitudes satisfy E{|a;k|?} = 0%&k. Assume that returns from different clutter
patches are uncorrelated:

E {a;ka;l} = U2fik6i—j6k—l : (59)
The clutter space-time covariance matrix follows directly from Equations (55) and (59):
Nr N
R.=E {xcxf} = o2 Z Z fikv;kvfi . (60)
1=1 k=1
Alternatively, Equation (60) can be expressed as
Nr N
R. =02 )Y &k (bibfl) ® (aall), (61)
=1 k=1
where b;x = b(w;x) and a;x = a(V;x). Each scatterer contributes a term that is the Kronecker
product of a temporal covariance matrix with a spatial covariance matrix. These two components
are coupled because the clutter Doppler is a function of angle. The matrix R, is an M x M block

matrix, where each block is an N X N cross-covariance of the spatial snapshots from two PRIs.
The pth row of R, corresponds to element n(p) and pulse m(p), where

(p) = mod(p, ) , m(p) = fioor (L) . (62)
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The pgth element of R, can be written, from Equation (61), as

Nr Nc

[Rel,g =D D o6 exp {7 [(n(p) = n(g)) 279k + (m(p) — m(q)) 27 wis]} . (63)

i=1 k=1

Since Equation (63) depends only on the difference between the pulse indices, the matrix R. is block-
Toeplitz. Moreover, Equation (63) depends only on difference n(p) — n(q) because the antenna is
an ideal uniform linear array and the clutter patches were assumed mutually uncorrelated; each
N X N block is itself Toeplitz. A matrix of this type is said to be Toeplitz-block-Toeplitz [19].

The expressions above apply to the general case of range-ambiguous clutter. The range-
unambiguous case will be mainly considered in the remainder of this report, and the ¢ subscript
denoting ambiguous range will be dropped. The clutter covariance matrix can also be expressed
compactly as

R. = V.EV{, (64)
where

Vo= v, ®op wuss ] (65)
is an MN x N, matrix of clutter space-time steering vectors and

EC = 02 dla‘g([fl’ oHis ok £Nc]) (66)

contains the clutter power distribution.

2.6.2 Clutter Ridges

The aircraft platform motion induces a very special structure to the clutter due to the depen-
dence of the Doppler frequency on angle. Consider again a single clutter patch located at azimuth
¢. and range R, (or elevation 6) and let R(GC,¢C) be a unit vector pointing from the platform to
this patch. The clutter spatial frequency is

'19c = M = ,\iCOSGC sin ¢C . (67)
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The Doppler frequency of the echo from this patch is defined by

k ac’ c]" Va
fc(aca¢c) = M . (68)

For this section, assume that the velocity vector is aligned with the array axis, as it would be with
a side-mounted antenna array and no crab. Therefore, v, = v,% and the clutter Doppler frequency
becomes

Fobe, bc) = %\&cosac sin ¢, . (69)

In terms of normalized Doppler and spatial frequency,

We = chr = (2UadTr> 19c . (70)

The clutter Doppler frequency is a linear function of sin ¢ and the normalized Doppler is linear in
spatial frequency. With normalized coordinates the slope of the clutter line is

,6 = i P (71)

which represents the number of half-interelement spacings traversed by the platform during one
PRI. For half-wavelength interelement spacing, 8 = 4v,/ A, f, is equivalently the number of times
the clutter Doppler spectrum aliases into the unambiguous Doppler space.

Equation (68) or (70) defines the locus in an angle-Doppler space where clutter is present.
This locus is referred to as the “clutter ridge,” shown in Figure 1. Figure 6 shows two views of the
clutter ridge for 3 = 1, which corresponds to the clutter exactly filling the Doppler space once.
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Figure 6. The 8 =1 clutter ridge. The PRF is 300 Hz. (a) Doppler frequency vs. sin ¢.
(b) Normalized Doppler vs. spatial frequency.

In general, the clutter ridge may span a portion of the Doppler space, or the whole Doppler
space, depending on the platform velocity, the operating wavelength, and the radar PRF. Figure 7
shows four examples. In these examples the PRF is fixed and the platform velocity varies. The
default case of a stationary platform and zero Doppler clutter is shown in Figure 7(a). If f, > 4v,/A,
(or B < 1), the clutter is said to be unambiguous in Doppler. The 8 = 1 case is shown in Figure 6;
Figure 7(b) shows the 8 = 0.5 ridge. If the clutter is unambiguous in Doppler, there may be
a clutter-free region in Doppler, and there is at most one angle where the clutter has the same
Doppler as a target. When f; < 4v4/A, or § > 1, the clutter is said to be Doppler-ambiguous. In
this case the clutter spectrum extends over a region larger than the PRF and folds over (aliases)
into the observable Doppler space. Figures 7(c) and (d) show Doppler-ambiguous clutter ridges. In
this case there may be multiple angles at which sidelobe clutter has the same Doppler as a target.
Furthermore, as 3 increases, the mainlobe clutter occupies a larger portion of the Doppler space.
The more Doppler-ambiguous the clutter, the more difficult it will be to suppress. For low-PRF
radars operating at UHF, the case of Figure 7(d) is typical.
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The space-time steering vector to a clutter patch can therefore be written as a function of
angle (or spatial frequency) alone:

Vc(¢c) = V(¢c, fc(¢c)) or Vc(ﬂc) = V(ﬂc, ,3190) . (72)

By substituting the clutter ridge equation into Equation (61), the clutter covariance matrix elements
may be expressed as

N
[Re],, = > 0% exp {52794 [(n(p) — n(q)) + B (m(p) — m(q))]} - (73)
k=1
It is sometimes useful to express the clutter covariance matrix, Equation (60), in integral form,

Re= [ se(d)ve(d)vE(4)do, (74)

=41

where s.(¢) is the clutter power spectral density obtained from the radar equation. In the simple
case of clutter power uniformly distributed in azimuth, s.(¢) = 1/2x, it can be shown that the
elements of the clutter covariance matrix have closed form

Relpy = Jo (Z522 (p) = (@) + 8 (m(p) = m(@))]) (75)

where Jo(z) is the zeroth order Bessel function.

2.6.3 Rank of the Clutter Covariance Matrix

The rank of the clutter covariance matrix will now be considered, as it is an indicator of
both the severity of the clutter scenario and the number of degrees of freedom required to produce
effective cancellation. The special structure embodied in the clutter ridge suggests that the clutter
is of low rank. Klemm [5] has hypothesized that the clutter rank is approximately equal to N + M.
Based upon extensive computer simulation, Brennan and Staudaher [18] developed the following
rule regarding the clutter rank.
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Theorem 1 (Brennan’s Rule): The rank of the clutter covariance matriz is approrimately given
by

re® [N+ (M-1)5], (76)

where (3, given by Equation (71), is the number of one-half interelement spacings traversed by the
platform during one PRI. The brackets | | indicate rounding to the nearest integer.

The rounding operation in Equation (76) is required as 3 is not necessarily an integer. When
B is an integer, Equation (76) can be replaced by an equality, and a rigorous proof for this case is
provided in Appendix A.

To see why Brennan’s rule holds, recall that each clutter patch contributes a term v(d., 39.)
to the space-time snapshot. Examination of the clutter space-time steering vector shows that the
phase of the clutter signal on the nth element and mth pulse is given by

Onm = 2m(n+mp)d. (77)

2% [(n + mB)d]cosfsing . (78)

The clutter Doppler makes the spatial snapshot for the mth pulse appear as though it is received
by an array whose position has moved by mf3d. Therefore, the effective position of the nth element
for the mth pulse is

dnm = (n + mpB)d. (79)

Figure 8 illustrates this concept for the case N = 4,M = 3, and § = 1. Note that element #1 on
pulse #0 is effectively at the same position as element #0 on pulse #1. Clutter observations are,
in effect, repeated by different elements on different pulses as the platform moves during a CPIL.
Therefore, the number of independent clutter observations is less than the total snapshot dimension
MN. Only independent observations contribute to the clutter rank. For the case in Figure 8, there
are exactly N + M —1 distinct observations, which is equal to the rank predicted by Brennan’s rule.
From Equation (76), the clutter rank increases linearly with § or equivalently with the amount of
Doppler ambiguity. Moreover, because the above argument did not rely on a range-unambiguous
assumption, Brennan’s rule holds for range-ambiguous clutter as well.
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To further illustrate Brennan’s rule, consider an example radar system whose parameters are
given in Table 2. The radar operates at UHF and utilizes an 18 x 4 planar array antenna. The
columns of this antenna are beamformed to form the elements (or channels) of the adaptive array.
The element pattern is a cosine in azimuth, where in the backlobe region the pattern is scaled by
an assumed backlobe level b,,

cos @, -90° < ¢ < 90°
0,0) = . 80
A50) { bocosg, 90° < ¢ < 270° (80)

This pattern is shown in Figure 9 for a nominal backlobe level of —30 dB. The radar PRF is
300 Hz and 18 pulses are transmitted within a coherent processing interval. A uniform taper on
the transmit pattern is assumed. Assume the platform altitude is 9 km and the range of interest
is 130 km. A v = —3 dB is chosen for the reflectivity to model heavy land clutter. The clutter is
divided among N, = 361 clutter patches equally distributed in azimuth about the platform. Figure
10 shows the resultant CNR from each patch. The total CNR per element per pulse is 47 dB.

For this scenario the parameter § is varied by changing the platform velocity while keeping
the PRF fixed. For each case the spectral decomposition

R. = E.AEX (81)

is computed where A. = diag(A1,...,Amn) is a diagonal matrix of the eigenvalues {);}. Bren-
nan’s rule says that only the first r. eigenvalues are nonzero. Figure 11 shows the results. The
value obtained from Brennan’s rule is indicated by the dashed lines. When 3 is an integer, the
eigenspectrum exhibits a sharp cutoff, as the covariance matrix is singular. Note also that the rank
becomes larger as the platform velocity is increased. The shape of the spectrum is determined by
the transmit pattern and the clutter power distribution in angle.

For noninteger (3, the eigenspectrum exhibits a gradual decrease as opposed to the sharp
cutoff present in a singular matrix. In these cases the clutter covariance is no longer singular,
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